

montena

The impulse to your progress

montena technology Switzerland montena.com

Introduction

- An alternative test method for the susceptibility to wire-coupled electrostatic discharges of the ECSS-E-ST-20-07C was developed and introduced in the latest revision of the standard.
- It improves many weak points observed in the previous method.
- The goal of this presentation is to compare the previous (legacy) test method and the alternative (new) test method.

Standard

ECSS-E-ST-20-07C Rev.2 3 January 2022

- Paragraph 5.4.12
 Susceptibility to wire-coupled electrostatic discharges
- => legacy method

- Paragraph 5.4.13
 Susceptibility to wire-coupled electrostatic discharges
- => current injection probe method

Calibration setup schematic

- Legagy method
 - No calibration schematic is defined.

- New method
 - A proper calibration schematic is defined.

Test setup schematic

Legagy method

New method

ESD sparker or high-voltage DC power supply

Generator requirements

- Legagy method
 - The generator internal components are specified.
 - Without any tolerances.

The discharge primary circuit is constituted of:

- (a) 6 kV spark gap,
- (b) 100 pF capacitance, high-voltage capacitor with inductance less than 20 nH,
- (c) 47Ω damping resistor (high voltage specification),
- (d) $10 \text{ k}\Omega$ resistors (high voltage specification).
 - Often built in the lab with discrete components.

- New method
 - The injected current waveform is specified.
 - Including tolerances.
 - (a) amplitude: $13 A \pm 1 A$
 - (b) rise time: 1,5 ns \pm 0,3 ns, measured between 10% and 90% of the peak amplitude
 - (c) duration: $3 \text{ ns} \pm 1 \text{ ns}$ at 50% amplitude
 - Commercially available.

Generator implementation

- Legagy method
 - The 6 kV spark gap is difficult to procure.
 - Only a fixed susceptibility level can be tested.

- New method
 - Spark gap replaced by a high voltage relay.
 - This enables an easy change of susceptibility levels.

Coupling device requirements

- Legagy method
 - Coupling wire.
 - Comprising a 20 cm long straight section and some extra length for connection to the rest of the circuit.
 - Tightly coupled to the bundle under test.
 - => Many possible implementations

- New method
 - BCI current probe.
 - 30A peak capability.
 - with a flat frequency response at least from Fmin-3dB = 7.5 MHz to Fmax-3dB = 400 MHz.

=> Clear definition

Coupling device implementation

- Legagy method
 - Many options

- New method
 - Stable setup

Coupling device nominal transfer function

Coupling device transfer function implementation

- Legagy method
 - Depends on the specific arrangement

- New method
 - Reproducible transfer function

Induced current waveform reproducibility Time-domain and spectrum

New method

Availability of components

 The generator and the accessories compliant with the new method are available as commercial products and turn-key systems.

Conclusion

• An alternative test method for the susceptibility to wire-coupled electrostatic discharges of the ECSS-E-ST-20-07C was developed and introduced in the latest revision of the standard, improving many weak points of the previous test method.

Conclusion

- The test methods were compared and the advantages of the new method can be summarized below:
 - Improved reliability.
 - Improved waveform stability.
 - Robustness against external influence parameters.
 - Improved waveform reproducibility between different labs.
 - No use of high voltage components difficult to procure.
 - Ability to change the pulse peak amplitude.
 - Ability to modify waveform parameters (rise-time, energy) by exchanging internal pulse modules.
 - Use of easily commercially available components as accessories.
 - Very simple test setup.
 - Defined calibration procedure.

Thank you for your attention

montena

The impulse to your progress

montena technology sa route de montena 89 1728 Rossens Switzerland

products@montena.com montena.com